Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels.
نویسندگان
چکیده
The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells showed coexpression of mRNAs for T-type subunits (Ca(V)3.1, Ca(V)3.2) and for an L-type subunit (Ca(V)1.2). The same expression pattern was observed in juxtamedullary efferent arterioles and outer medullary vasa recta. No calcium channel messages were detected in cortical efferent arterioles. Ca(V)1.2 protein was demonstrated by immunochemical labeling of rat preglomerular vasculature and juxtamedullary efferent arterioles and vasa recta. Cortical efferent arterioles were not immunopositive. Recordings of intracellular calcium concentration with digital fluorescence imaging microscopy showed a significant increase of calcium in response to K(+) (100 mmol/L) in isolated afferent arterioles (140+/-25%) and in juxtamedullary efferent arterioles (118+/-21%). These calcium responses were attenuated by the L-type antagonist calciseptine and by the T-type antagonist mibefradil. Intracellular calcium increased in response to K(+) in cortical efferent arterioles (21+/-9%). Mibefradil and nickel concentration dependently blocked K(+)-induced contraction of perfused rabbit afferent arterioles. Calciseptine blocked the contraction mediated by K(+) (EC(50) 8x10(-14)). S-(-)-Bay K 8644 had no effect on vascular diameter in the afferent arteriole. We conclude that voltage-dependent L- and T-type calcium channels are expressed and of functional significance in renal cortical preglomerular vessels, in juxtamedullary efferent arterioles, and in outer medullary vasa recta, but not in cortical efferent arterioles.
منابع مشابه
Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملKidney Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature
Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 89 7 شماره
صفحات -
تاریخ انتشار 2001